
The flying train

Was it IEC - 61508 Safety Certified?

First winter snow has stopped the eurostar

high speed train running for 3 days. It

couldn’t cope with the temperature differ-

ence between the warm tunnel and the

frigid air. The high speed train between

Paris and Amsterdam was stopped on its

tracks because the safety system overre-

acted. The fail-safe mechanism forced the

driver to reboot the engine while passen-

gers were kept waiting for three hours. A

spokesperson said that even extensive test-

ing had never found these issues. They also

experienced problems with the new com-

munication system.

Electronics and software are increasingly

replacing and enhancing mechanical solu-

tions. The issue is the state space explo-

sion.

Contrary to mechanical counterparts, soft-

ware knows no graceful degradation. How

can engineering tackle this challenge?

From Deep Space to Deep Sea

www. Altreonic.com

A coherent approach to systems and safety engineering

User

Applications

Test harness

Modeling
Activities Formal

Modeling

Modeling

Architectural

M
odeling

R
u

n
tim

e

su
p

p
o

rt
H

ardw
are

Platform

Meta-models

Unifying

Repository

Unified architectural paradigm:

Interacting Entities

Unified

Semantics

Simulation

R
eq

ui
re

m
en

ts

ch
ec

ki
ng

R
eq

ui
re

m
en

ts

Sp
ec

ifi
ca

tio
ns

capturin

g

D
ev

el
o

p
m

en
t,

 V
er

if
ic

at
io

n
,

Te
st

, V
al

id
at

io
n

Norm
al c

ase
s

Test
ca

se
s

Fault
ca

se
s

W
o

rk
p

la
n

OpenComRTOS

Designer ©

Formalized modeling,

Simulation,

Code generation,

Visual tracing and

debugging

Starfish ©

Control & processing platforms

natively supporting distributed

concurrency & communication with

 fault tolerance capability.

OpenComRTOS ©

Formally developed

Runtime support for

concurrency and

communication

GoedelWorks©

Formalised requirements &

specifications capturing

Project repository. Safety Stan-
dards awareness

Elegance & Engineering
Scalable Smart Systems

Trustworthy Software

The Future Has Arrived

An iterative V-Cycle

Systems and software engineering is a multi-domain activity. The key how-

ever is the human factor. People from different domains speak different lan-

guages, even if they mean the same thing. This leads to misunderstanding

and is one of the prime reasons why projects are late or fail. Altreonic’s

“Unified Semantics” approach recognizes this from the beginning, reducing

the need for continuous translations between the domains.

Engineering projects can be challenging because of the complexity involved.

The system can have many composing sub-systems that must fit and work

together. The same applies to the engineering organi-

zation. Many skills come together and must continu-

ously communicate and coordinate to reach the goals.

To manage this challenge, decomposition and separa-

tion of concerns helps.

Altreonic’s “Interacting Entities” paradigm is a com-

mon sense but universal approach for dealing with it.

Given the complexity of systems and software engi-

neering, a systematic approach is needed to reach a

successful delivery of a system. Determining what is

the right system is as important as developing it right. Reducing the com-

plexity means reducing it up front, which is also more cost-efficient.

Keep it Simple but Smart.

Nevertheless, further stages will always discover issues that were over-

looked or that will provide new insights. Hence we advocate a fine-grain it-

erative V-model. Requirements only become final when the system is re-

leased to production. Using a modular architecture and using dependency

graphs, it also becomes more cost-efficient to develop and certify a family of

products.

What means trustworthy?

Trust in engineering is necessary because ultimately the systems and prod-

ucts developed are to be used by humans. Trustworthy can be decomposed

in four components:

Safety— This is the traditional property that is associated with high quality

and reliability. However, high quality is not enough to achieve safety. Hence

Altreonic decomposes use cases in three type: normal cases, test cases and

fault cases. Any systems must be thought out from the beginning to satisfy

all of them. If not, in the worst case human lives can be at stake.

Security— While traditionally associated with the IT

sector, embedded devices and systems are now every-

where. Whereas safety is dealing with inherent risks

and hazards, security deals with maliciously introduced

faults. Also fellow human beings can be a risk factor.

Privacy— While automating our lives, embedded sys-

tems increasingly need to register personal data that

people provide because they trust the system. Again,

malicious misuse of this data must be prevented and is

a risk factor that must be taken into account.

Usability— The more we interact with embedded devices, the more we pre-

sume they will work and interact as we expect, certainly when we need

them in a critical situation. This is a domain where human and machine be-

come part of a larger system and hence speaking the same “semantics” is

crucial for acceptance of the new technology.

“”Concept” is a difficult concept”. L. Wittgenstein

GoedelWorks ©

Developed as a multi-user web

portal, GoedelWorks integrates

Altreonic’s methodology using a

straightforward systems engineer-

ing information model, combining

the process as well as the project

view. It can support a project from

early conception till release of the

product or system. Safety Stan-

dards awareness (IEC-61508, IEC-

62061, ISO-26262, ISO-13849, ISO-

25119 and ISO-15998) supports

pre-certification.

Formal and formalized
modeling & verification

In need of verifying C code or

verifying numerical stability of

algorithms?

Altreonic has experience and

know-how of different formal

tools and methods, such as TLA+/

TLC, CSP, UPPAAL and B. We also

use tools that formally verify C

code.

Only software can be
error-free.

At Altreonic we don’t speak of

software bugs. Even faulty soft-

ware will fail quite predictably as

the program is a very determinis-

tic state machine. Software how-

ever has errors, either by specifi-

cation, either by design. All other

faults are externally induced.

Tools, dependency trees and version management
for productivity and consistency
While Unified Semantics and Interacting Entities bring you a long way in mas-
tering complex design, in the project domain teamwork, discipline and consis-
tency are key. Hence our tools support the methodology to boost productivity
and automate whenever possible. Hence, requirements and specifications cap-
turing comes down to incrementally building up a structured web portal, that
becomes a living repository for the project.

In order to keep track and support reuse, version management and depend-
ency trees are essential. Version and configuration management allows to have
consistent snap-shots of the system. Dependency and precedence trees allow
to analyze the impact of changes, as small as they can be.

Safety means that failures are anticipated by backtracking them to the original
root cause. In an engineering process, the reverse happens as well. Any change
in the input is reflected in the system’s behavior.

R&D background

ASIL, with Flanders Drive Automotive
cluster on a common Safety Integrity
Level engineering (IWT).

EVOLVE, on Evolutionary Verification
and Certification of safety critical sys-
tems (ITEA).

OPENCOSS, on developing a common
certification methodology for Auto-
motive, Railway and Aerospace. (FP7)

Architecture Matters

While there many solutions for a given

problem, often they create more complexity

than needed. This comes from the fact that

the complexity reflects the learning process.

In the beginning, the information looks con-

fused and overlapping and not well struc-

tured.

Gradually, order will come forward as in-

sight will have been gained. This comes

from analyzing how it really works and tak-

ing a step back. In engineering we call this

formalization. What it comes down to is

building abstract models that help in getting

rid of the confusing details. Complexity is a

sign of a problem not well understood.

Architecture is the forgotten art of engi-

neering. Clean architectures make a differ-

ence.

StarFish © Fault Resilient computing

There was a time when mechanical solutions were dominant. Bulky

and heavy, but mostly inherently safe because operating in the con-

tinuous domain, they had the benefit of graceful degradation.

Now digital electronics and software domi-

nates because it makes things smarter, more

flexible, cheaper and lighter. The issue is that

we are here in the digital domain and every

clock pulse (often billions per second) a single

glitch can make things go wrong.

The solution again is the architecture and con-

currency. Concurrency provides more per-

formance but also redundancy when needed.

Such a safe architecture cannot be put as a layer on top of an unsafe

one. The underlying basis must be correct be design. Therefore

OpenComRTOS was formally developed as well as formally proven.

Less code means also lower probability of error. Scalability by design

also means that transparent parallel processing makes distributing

the work for redundancy is built in. No clumsy middleware to deal

with gives better performance.

Safe Systems = SIL4

Making systems safe by design is

not easy. It requires thinking up

front about behavior that should

never happen. Even when done

properly, there is still the so-called

common mode failure. It symbolizes

that the unthinkable can happen

and that it will happen is a certainty.

Therefore we disagree with safety

thinking that goes for so-called fail-

safe states when a fault is detected.

An impaired system that is no

longer fully functional is no longer a

safe system.

In safety terms systems should be

designed for a SIL4 level , impaired

by a fault but still fully functional in

SIL3 mode.

OpenComRTOS ©

Formally developed and verified,

OpenComRTOS is a network-

centric, small but very powerful

approach for transparent concur-

rent and distributed real-time em-

bedded systems. Ideal for many-

core SoCs.

Design once, run everywhere has

never been easier.

OpenComRTOS

Designer ©

Alreonic’s visual modeling envi-

ronment. Combined with power-

ful code generators and simula-

tion capability on Windows or

Linux PCs, it allows the engineer

to focus on the essence of his

application and reduces consid-

erably the time needed to de-

velop embedded software.

OpenTracer ©

Altreonic’s OpenTracer is a power-

ful graphical tool for analyzing,

verifying and profiling real-time

embedded software.

Integrated with Altreonic’s Open-

ComRTOS Designer, OpenTracer is

like an oscilloscope for the embed-

ded engineer.

Virtual Machine in 3 KB

Dynamic code in embedded dis-

tributed systems doesn’t need to

be big. Using a formalized ap-

proach we developed the capabil-

ity to execute any binary code on

any processor. Still the code is en-

capsulated as a real-time task and

only requires a few KBytes of extra

memory. This is what real embed-

ded systems need.

F

I

F

O

Task1

I/O Driver

Task

Task3
Task2

P

O

R

T

Link Driver

Task

Task4

ISR

ISR

Communication Carrier

Hardware Layer (I/O)

Packet Pool

Sending a

Packet

Receiving a

Packet

Kernel

Task

I/O Driver

Task

ISR

Task5

R

E

S

Memory Pool

H

U

B

Virtual Single Processor

S

E

M

A

E

V

E

N

T

Application View Node Independent

Safety engineering
standards
The first domain where engineering

was applied is in the safety domain.

Naturally, lives are at stake and fail-

ures can be catastrophic and expen-

sive. Standards like ISO-26262,

IEC61508, DO-178C have pioneered

and make way for a systematic ap-

proach to systems engineering.

Engineering services

Altreonic puts is experience at

work by providing its customers

training, supporting tools and

services. Especially for new pro-

jects, the transition to a formal-

ized methodology can be daunt-

ing. However, once the concepts

are understood, the complexity

disappears to make room for a

new insight.

Why a formalized methodology is paying off

Traditional bottom-up development can sometimes gives a quick first result. This

can be a good approach for quick prototyping, but it carries a high risk to use this

approach for a production version. Incomplete and contradictory requirements

will creep up in the architecture, resulting in issues during testing or worse in

production. This shows up as a high risk in run-away costs as the cost of changes

can skyrocket. A formalized approach on the other hand, will shift the shift the

work upfront where making a change is often just a matter of thinking things

through and making the changes in the specification or computer models. A such

a high reliability driven design can easily have a lower lifecycle cost.

Safety system properties

Safety can not be bolted onto a sys-

tem like an afterthought. It is not

provided by any of the subsystems,

be it hardware or software. Safety

is the result of a well thought out

system architecture and can only

be reached by following a system-

atic and formalized process.

Service domains

 Training

 Formal model checking and
software verification

 Embedded software develop-
ment

 Customer specific adaptations
of Altreonic’s software tools.

Run-away Risk

Enabling technology

Altreonic’s approach shines in the

context of novel and daring appli-

cations where scalability, distrib-

uted operation, high reliability

and real-time are dominant re-

quirements.

OpenComRTOS is an enabling

technology and thanks to its small

footprint it combines perform-

ance and low power.

Application domains

 Robotics

 Autonomous systems

 Machine control

 Parallel DSP systems

 Many-core platforms

 Fault Tolerant systems

 Measuring and sensing

Open Licensing

Customers want to reduce their

risks and be able to verify and

certify their products. Beyond

the Open Source model, an

Open License not only delivers

source code, but also the formal

models, design documents, test

suites and the right to use and

modify, even to resell. This is

innovation as well.

KISS revisited

“Keep it Simple but Smart, which

means that a complex solution is a

problem not well understood. On

the other hand finding a simple

solution can require quite a lot of

hard thinking.”

Unexpected benefits of going formal

“Altreonic has first hand experience that its methodology delivers. While we have

a 20 years experience in real-time embedded systems and in particular in devel-

oping and selling the highly successful Virtuoso RTOS (acquired by Wind River

in 2001), it was still a mind opening experience when we developed a new RTOS

from scratch, whereby a systematic methodology was followed. Moreover, we

found that using formal methods was not that hard and could be done with a

small but dedicated team.

The abstraction provided by the formal tools allowed us to completely rethink the

architecture without getting lost in the details of the implementation. The result

was astonishing. The code size for example is 5 to 10 times less than the equiva-

lent functionality of a traditionally designed RTOS. We can easily fit all func-

tionality and more in 5 to 10 Kbytes per node. In addition, OpenComRTOS is

much more portable, scalable and safer. It can also transparently support hetero-

geneous, many-core or networked target systems, which also enables a new way

of looking at fault tolerance.

Sometimes, people tell us that small code size is not that important anymore as

memory is cheap. They seem to forget that memory speed hasn’t kept up with

processor technology. Less code and less data also means less power consumption

and higher performance. The transparent parallel/distributed operation also

makes it easier to use multiple cores at lower frequency, further reducing power

consumption.

The lesson to remember is that rigorous engineering

doesn’t need to be more expensive. It does not only

provides more trustworthy products, it can also

make them more cost-efficient and less taxing on the

environment. Good engineering has always been

about resource management.”

Code Size Matters

Did you know that processors have

become about 1 million times more

powerful since the first one was cre-

ated? This is thanks to Moore’s Law

telling us that the semiconductor in-

dustry would double performance

every 18 months because they could

make the features smaller and

smaller.

But did that make the applications

like your laptop 1 million times as

faster or more powerful?

No, it didn’t.

Why? Because memory technology

couldn’t keep up. Software became

bigger every day. This means that the

CPU is kept waiting for the memory

before it can put it in its cache. This

also means that that more energy is

needed.

Hence, code size still matters. Less

gives more performance and requires

less energy.

Ultra Low Power Processing

Green Software

Does small code size only matter for

ultra low power devices? Of course

not.

Some server clusters that are the

centre of our ubiquitous internet

require a small electric power plat

to operat en have their own cooling

system.

A lot of the heat comes from the

ever growing software size. And

while it enables faster development

of more reuse, the overhead can be

a factor of 100 to a 1000.

The key is the architecture. If we

could develop OpemComRTOS from

scratch and using a formalized ap-

proach make it 10 times smaller

than a hand-coded earlier version,

what does that mean for main-

stream software?

Again code size matters.

Wearable or even bio-implanted electronics are increasingly assisting our

human sensor system.

At the heart is often a small chip that senses the environment, amplifies

the signal and feeds it to one or more small on-chip processors.

The more processing performance available, the smarter we can make

these devices. But, the limiting factors are today no longer size, but power

requirements and heat dissipation.

Small code matters and can make the difference between having a labora-

tory demonstrator and a real product on the market.

Code Size Matters

If the processor are getting too fast

for the memory, how can we avoid

the performance bottleneck?

Algorithms are often concurrent by

nature. But they execute on sequen-

tial processors. Therefore it helps to

decompose the software in smaller

concurrent units, each being smaller.

Less instructions means less often

going to memory and less processing

cycles. The result is less code giving

more performance.

As the side-effect, one can then dis-

tribute the application over multiple

processing cores. As each can run

slower than as single processor, there

is less mismatch with the memory

speed and less power will be re-

quired.

StarFish© Very High Speed Processing

Embedded systems often have to process real-time data coming from the

environment. The amount of data can be massive either by its nature, ei-

ther by the fact that a large number of channels are sampled. Also to ex-

tract meaningful information (e.g. object recognition) very complex and

processing intensive algorithms are needed, often necessitating the use of

parallel processing hardware.

This is the domain of embedded supercomputing. This domain is often

even more constrained by power and size restricting because the embed-

ded computer is based in a difficult environment.

OpenComRTOS was designed with such boundary conditions in mind.

Parallel Software

If the processor are getting too fast

for the memory, how can we avoid

the performance bottleneck?

Software is essentially modelling of

systems. Most systems are com-

posed of concurrent sub-systems

that interact. Hence, concurrent

software is more natural that the

large sequential programs we find

today.

In GoedelWorks the user will map

his specifications to separate enti-

ties. Mapping them to the concur-

rent tasks of OpenComRTOS De-

signer is therefore natural.

The code is easier to maintain, and

easier to parallelise, hence provid-

ing more performance.

From Deep Space to Deep Sea
If it doesn’t work, it was art.

If it does, it was good engineering

Contact:

Altreonic NV

Gemeentestraat 61A b1

B3210 Linden—Belgium

Tel.:+32 16 202059

info.request @ altreonic.com

www. Altreonic.com

Trustworthy Forever

